Institut für Numerische und Angewandte Mathematik A general solution algorithm for non-convex mixed integer optimization problems with only few continuous variables

نویسندگان

  • A. Schöbel
  • D. Scholz
  • Anita Schöbel
  • Daniel Scholz
چکیده

Geometric branch-and-bound techniques are well-known solution algorithms for non-convex global optimization problems. Several approaches can be found in the literature differing mainly in the bounds used. The aim of this paper is to extend geometric branch-and-bound methods to mixed integer optimization problems, i.e. to objective functions with some continuous and some integer variables. We derive several bounding operations and analyze their rates of convergence theoretically. Moreover we show that the accuracy of any algorithm for solving the problem with fixed integer variables can be transferred to the mixed integer case. Our results are demonstrated theoretically and experimentally using the truncated Weber problem and the multisource Weber problem. For both problems we succeed in finding exact optimal solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness Tests for Public Transport Planning

1 Institut für Straßenund Verkehrswesen, Universität Stuttgart, Stuttgart, Germany [email protected] 2 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany [email protected] 3 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany [email protected] 4 Institut für Numerische und Angewand...

متن کامل

Approximating optimization problems over convex functions

Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in H(Ω), and optimizing functionals arising from some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive sem...

متن کامل

FORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION

Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Global Optimization of Mixed-Integer Nonlinear Problems

Two novel deterministic global optimization algorithms for nonconvex mixed-integer problems (MINLPs) are proposed, using the advances of the BB algorithm for noncon-vex NLPs Adjiman et al. (1998a). The Special Structure Mixed-Integer BB algorithm (SMIN-BB addresses problems with nonconvexities in the continuous variables and linear and mixed-bilinear participation of the binary variables. The G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012